
A Cryptographic Dead Person’s Switch

Owen McCadden and Houlton McGuinn

May 2022

Our project was the creation of a cryptographic dead person’s switch, which
automatically releases its contents should a user stop checking in with the ser-
vice. Potential users of our project include whistle-blowers, political dissidents,
and end-of-life planning for individuals. Our project makes use of verifiable
delay functions (VDFs) and threshold secret sharing to achieve our security
goals. Through the security properties of our VDF, threshold secret sharing,
and modeling SHA256 as a random oracle, as long as some threshold of servers
are honest and available the contents cannot be released prior to the users spec-
ified timeframe and are assured to be released.

1 Introduction

A dead person’s switch is a system
that releases its contents after a fixed
amount of time only if the user stops
checking in with the system. Each time
the user checks in, the internal clock
is reset. If the internal clock expires
without a valid check in, the dead per-
son’s switch is triggered and the con-
tents are released.

Simplified implementations of a
dead person’s switch rely on a trusted
third party, leading to issues of trust
and privacy. For instance, the third
party could read the message before
the internal clock expires, or the third
party could discard or modify the mes-
sage. Our implementation aims to ad-
dress these issues and improve the dead
person’s switch using cryptographic
techniques.

1.1 Background

Our implementation relies on verifiable
delay functions and threshold secret
sharing to achieve our security goals.
Secret sharing involves splitting some
secret S, into n shares such that k
shares are needed to reconstruct S. We
use a Python implementation Shamir
secret sharing, the details of which can
be found in [1] and [2].

Verifiable delay functions are a
class of functions that require a speci-
fied number of sequential steps to eval-
uate, produce a unique output, and
can be efficiently verified [3]. Im-
portantly, they cannot be significantly
parrelized or sped-up. Our projects
uses a Rust implementaion of the
Wesolowski VDF which is based on re-
peated squaring over a finite group of
unknown order[4][5].

1



2 Overview

2.1 Motivation

The motivation for our project is to re-
move the need for a trusted third-party
in a dead person’s switch. Online ser-
vices like Dead Man’s Switch [6] and
Dead Man Tracker [7] exist, but do not
secure one’s contents from the service.
Given they release the plaintext with-
out interaction from the user, they also
have access to it. There is no guarantee
that the contents released are the same
contents submitted by the user. These
services also provide a centralized fail-
ure point which is undesirable in the
case of technical issues for the service
or targeted failure should the service
providers choose not to release a user’s
information. Our project aims to solve
both these problems, hiding the plain-
text from the service and ensuring the
release of the information.

Real world use-cases of our project
include end-of-life planning, for exam-
ple sending loved ones the passwords
and information required for access-
ing the deceased accounts. Another
use case is as a form of insurance for
political dissidents who may fear im-
prisonment or bodily harm. In 2010,
WikiLeaks published an encrypted file
labeled ”insurance” to be released if
something were to happen to their
website or Julian Assange [8]. The en-
cryption key for this file was escrowed
with trustedWikiLeaks volunteers, our
project removes the need for this trust
in an individual.

2.2 Threat Model

The threat model for our project is fo-
cused on limited subsets of dishonest
servers and clients who seek to learn

the contents earlier than intended. Un-
der our threat model, a single ma-
licious server that deviates from the
protocol should learn nothing about a
user’s contents earlier than intended
and should not be able to prevent
the release of or modify the contents.
A semi-honest client should not be
able to convince the servers to release
the contents earlier than intended and
should not be able to convince the
servers that they have solved the VDF
with a proof without having solved the
VDF.

2.3 Security Goals

Our project has two primary security
improvements over a standard dead
person’s switch: the service should
learn the plaintext no earlier than
when it should be released and the user
should have some assurance that the
plaintext will eventually be made pub-
lic.

2.4 Security Assumptions

We assume that some fraction of the
servers are honest and available. We
also assume that SHA256 acts as a ran-
dom oracle.

3 Protocol

While not implemented in our inital
version of the protocol, all communi-
cations between the server and user
should be encrypted.

Setup(user, share, public key,
pp): To initiate a dead person’s
switch, a user starts by generating 16
random bytes to be used as the VDF’s
public parameters. An encryption key
is then derived using PBKDF2 and the

2



user’s contents are AES256 encrypted
using this key. The client also gen-
erates an elliptic curve public/private
keypair. Finally, the ciphertext is
padded and split using Shamir secret
sharing into n shares of which k are
needed to reconstruct the ciphertext.
The client submits to each server: an
unique identifier, a share of the cipher-
text, it’s public key, and the VDF’s
public parameters.

Check in(user, signature,
new pp, new proof, new share):
A user prepares to check in by gen-
erating 16 new, random bytes to be
used as the VDF’s public parameters.
A new encryption key is derived and
the plaintext reencrypted. The new ci-
phertext is split into shares and signa-
ture using the user’s private key. The
user submits it’s identifier, signature,
new share, and new public parame-
ters. A server accepts the check in if
the signature is valid and updates its
information for the user.

Request(user) → pp: Anyone
can request the public parameters for
a user. The server responds with the
public parameters for the user’s VDF
function.

Solve(user, proof): → share
∨⊥ Anyone can attempt to present a
proof that they have solved a user’s
VDF function and know the user’s en-
cryption key. Because of the VDF’s
properties, this is also proof that the
time specified by the user has elapsed.
If the proof is correct, the server re-
turns its share, otherwise it returns
⊥. Upon receiving the shares, the ci-
phertext can be reconstructed and the
plaintext decrypted.

3.1 VDF & Key Genera-
tion

The user’s setup in more detail:

1. Generate 16 random bytes.

2. Compute output of VDF using
the 16 random bytes as the chal-
lenge.

3. Derive encryption key using
PBKDF2 with the 16 random
bytes as salt and the VDF out-
put as key material.

4. Encrypt plaintext using AES-
GCM with fixed nonce (each key
is only used once).

5. Pad the ciphertext and tag to
multiple of 128 bits.

6. Split the padded ciphertext of
length l into l/16 shares (the
Shamir secret sharing implenta-
tion used can only split equal to
16 bytes).

7. Secret share the split, padded ci-
phertext into n shares of which k
are needed to reconstruct it.

Solving a user’s switch in more de-
tail:

1. Request the VDF’s starting pub-
lic parameters from the server for
a user.

2. Begin solving the VDF. The
client should also periodically re-
request the VDF’s public param-
eters as if they have been up-
dated, the server will reject the
proof of work on the old VDF.

3. Use PBKDF2 with the VDF out-
put as key material and the
VDFs challenge as the salt to de-
rive the encryption key.

3



4. Present the VDF proof to the
server which verifies it.

5. Combine the shares from each
server to obtain the padded ci-
phertext.

6. Unpad the ciphertext and tag.

7. Decrypt the ciphertext using the
derived key, obtaining the plain-
text.

4 Discussion

4.1 VDF Choice & Imple-
mentation

For use in our project, we used an im-
plementation of the Wesolowski VDF
in Rust [4][9]. For this VDF, a user
generates a public and private keypair.
The user can then compute the trap-
door function using its secret key to
efficiently compute the output y, given
some data and a time parameter ∆.
Anyone, given the public key, the data,
and ∆ can compute y only by expend-
ing time ∆. This allows a user to
efficiently compute the output of the
VDF, y, and therefore derive the en-
cryption key and proof. To others,
without the knowledge of the secret
key, they will have to expend time ∆.
This ensures that at least time ∆ must
occur before the encryption key com-
puted and the shares retrieved from
the server.

4.2 Preventing Early Dis-
closure

No one is able to learn the plaintext
without first solving the VDF as the
encryption key is derived from the out-
put of the VDF. Because the VDF

output is unpredictable and modeling
SHA256 as a random oracle, the VDF
must be solved to present the proof and
learn the encryption key to decrypt the
ciphertext. The properties of the VDF
ensure that a certain amount of time
has passed before anyone can learn the
encryption key. A malicious server
cannot cheat and learn the plaintext
as it only has its single share and re-
gardless would also have to solve the
VDF to learn the encryption key. If
multiple servers are malicious, the ci-
phertext can only be reconstructed if k
of the n servers collude. Even if all
servers are malicious, they still have
to solve the VDF before learning the
plaintext.

4.3 Assuring Disclosure

No action is needed by a user to make
the encryption key public. Because the
VDF parameters are public, should a
user stop checking in, anyone can re-
quest and then solve the VDF chal-
lenge. Should a server be unavailable
or otherwise unwilling to provide its
share, the ciphertext can still be re-
constructed if k of the n servers are
available.

4.4 Key Derivation

For our project, we use the Wesolowski
VDF that satisfies correctness, sound-
ness, and sequentiality. While the out-
put of a VDF is not indistinguish-
able from random, it is unpredictable
by the sequentiality definition. Un-
der the random oracle model, any un-
predictable bitstring can be expanded
to a longer, unpredictable uniformly
random bitstring [3]. Assuming that
SHA256 models a random oracle, and
given that the key derivation material

4



is unpredictable because of the sequen-
tiality of the VDF, no one can compute
the encryption key without first solv-
ing the VDF.

4.5 Potential Issues

One potential issue with the protocol
is the malleability of the shares. If
k or more servers collude and replace
the user’s contents with contents gen-
erated by them and encrypted under
the same key, there will be no way to
tell. To prevent this, user’s should dig-
itally sign their ciphertext and publish
this signature out-of-band somewhere.

For the information contained in
a user’s ciphertext to become pub-
lic, someone has to compute the VDF
and perform a long sequential com-
putation. If no one performs this
computation– potentially due to its
length or lack of interest– the users
plaintext will never become public.
The role of VDF computer could po-
tentially be done by the servers pos-
sessing the shares. Each server would
immediately start solving the VDF
function upon check-in and publish the
plaintext to some website upon solv-
ing the VDF. This could potentially in-
troduce performance issues with many
users and may not be a feasible solu-
tion.

Our project in its current version
allows anyone to setup a dead per-
son’s switch. There is also no way
to know the value of solving the VDF
without expending the computational
resources required to solve it. An
adversary could repeatedly setup new
switches with bogus data as the out-
put. As solving most VDFs would
now be a waste, users may be dis-
incentivized from spending computa-
tional resources to solve them. This

could potentially be solved by requir-
ing some cost to setup a switch (re-
quire a cryptocurrency transaction to
occur first), require a user to prove
their identity (but loses anonymity), or
have a user vouch for their switch out-
of-band (publish on twitter that switch
12345 is theirs and contains informa-
tion of value).

Another potential issue is the over-
head required to verify a submitted
proof. While significantly cheaper
than evaluating the VDF, a malicious
client could launch a denial-of-service
attack by submitting many incorrect
proofs. A production version of this
protocol would need to protect against
this form of abuse.

Our project assumes that some
fraction of the servers are available. As
each user checks-in to each server indi-
vidually, if a server is offline or other-
wise unreachable, the state of the cur-
rent share and VDF public parameters
could become unsynchronized. While
this is partially mitigated through the
secret sharing and some fraction of
servers being unavailable is okay, there
is no clear way to recover from a bad
state without a new check-in. Addi-
tionally, a client requesting the pub-
lic parameters for a user could request
from the server with the old parame-
ters. While this is mainly a usability
issue, ideally there would be some way
to exclude a server with invalid state
or at least notify it and the user that
is is out-of-sync.

4.6 Improving Security
With Hardware En-
claves

To improve the security of our imple-
mentation, a hardware enclave could

5



be used by the servers. This would pro-
vide additional security should a server
become compromised, but importantly
would enable attestation that the
server’s code matches a publicly known
version. This, would decrease the like-
lihood that any given server is mali-
cious or deviates from the protocol.

We explored the possibility of pro-
visioning a hardware enclave using
AWS Nitro Enclaves and AWS EC2.
An AWS Nitro Enclave provides a
secure, isolated compute environment
within a parent EC2 instance [10]. The
AWS Nitro hypervisor offers protection
for the CPU and memory of the en-
clave. For our use case, we would also
need to establish a secure local com-
munication channel between the Nitro
Enclave, the parent EC2 instance, and
an external URL to allow an external
user to communicate with the applica-
tion. This fits well with a servers ar-
chitecture in our protocol.

5 Conclusion and Fu-
ture Work

5.1 Future Work

Our initial implementation of this
project focused on the security goals
for a user of the service. More work
is needed on preventing abuse, par-
ticularly on denial of service attacks
against a given server. Additionally,
running the server within a hardware
enclave will provide an added layer of
security.

5.2 Conclusion

Using VDFs and Shamir secret shar-
ing, our project creates an improved
cryptographic dead person’s switch,

preventing the contents from being
read earlier than intended and mak-
ing the user more confident in their
release. This project illustrates how
cryptographic techniques can be used
to improve the security and privacy of
existing systems. We hope that our
work and research can ultimately lead
to a more secure, usable dead person’s
switch that does not rely on a trusted
third party.

6 References

[1] Adi Shamir. 1979. How
to share a secret. .ACM
22, 11 (Nov. 1979), 612–613.
DOI:https://doi.org/10.1145/359168
.359176
[2] Secret sharing schemes. Re-
trieved April 26, 2022 from
https://pycryptodome.readthedocs.io/en/
latest/src/protocol/ss.html
[3] Boneh, D. Verifiable Delay Func-
tions. Crypto, 757-788 (2018).
https://eprint.iacr.org/2018/601.pdf
[4] Wesolowski, B. Efficient Ver-
ifiable Delay Functions. J
Crypto 33, 2113–2147 (2020).
https://doi.org/10.1007/s00145-020-
09364-x
[5] Boneh, D. A Survey of Two Ver-
ifiable Delay Functions. Cryptol-
ogy ePrint Archive: Report 2018/712
https://crypto.stanford.edu/ dabo/pubs/
papers/VDFsurvey.pdf
[6] Dead Man’s Switch. Re-
trieved April 26, 2022 from
https://www.deadmansswitch.net/
[7] Dead Man Tracker. Re-
trieved April 26, 2022 from
https://www.deadmantracker.com/
[8] Kim Zetter. 2010. WikiLeaks
posts mysterious ’insurance’ file. (July
2010). Retrieved April 26, 2022 from

6



https://www.wired.com/2010/07/
wikileaks-insurance-file/
[9] Poanetwork. Poanetwork/VDF:
An implementation of verifiable
delay functions in rust. Re-
trieved April 26, 2022 from

https://github.com/poanetwork/vdf

[10] AWS Nitro Enclaves User Guide.
Retrieved April 26, 2022 from
https://docs.aws.amazon.com/enclaves/
latest/user/nitro-enclave.html

7


